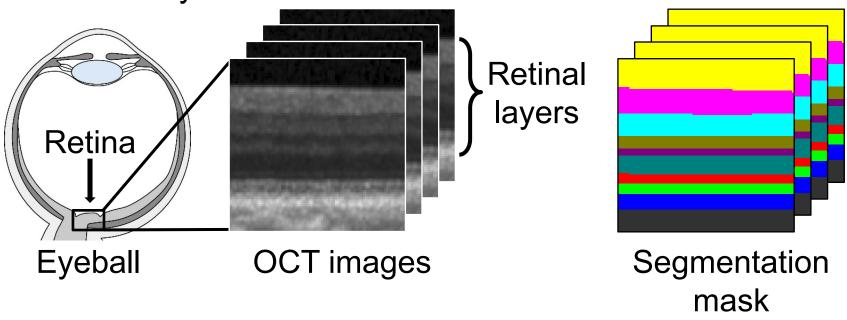


Formula-Driven Data Augmentation and Partial Retinal Layer Copying for Retinal Layer Segmentation

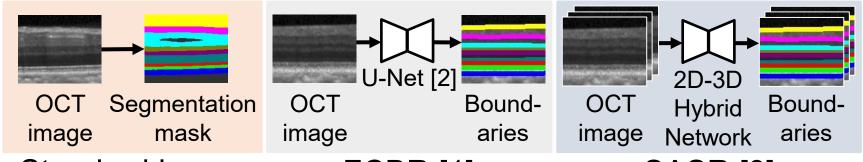
<u>Tsubasa Konno</u>¹, Takahiro Ninomiya², Kanta Miura¹, Koichi Ito¹, Noriko Himori², Parmanand Sharma², Toru Nakazawa², and Takafumi Aoki¹

1 Graduate School of Information Sciences,


Tohoku University, Japan

2 Department of Ophthalmology,

Graduate School of Medicine, Tohoku University, Japan


Optical Coherence Tomography (OCT)

- ☐ Visualize the internal structure of retina noninvasively in three dimensions
- ☐ Use OCT images to evaluate the thickness of retinal layers for diagnosis of diseases that cause structural changes in the retina
- Measure the thickness of retinal layers by segmenting retinal layers

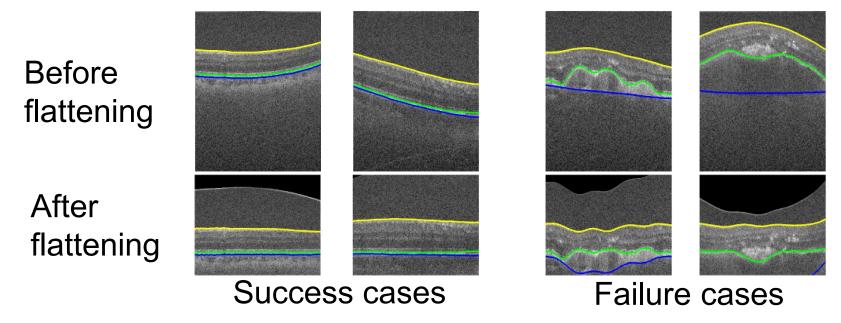
Conventional Methods

- Standard image segmentation: Pixel-wise labeling
 - Cannot consider the anatomical order of retinal layers
- Boundary detection: Detect the boundaries between retinal layers according to the anatomical order of the retinal layers
 - FCBR [1]: 2D U-Net [2]
 - SASR [3]: 2D-3D hybrid network

Standard image segmentation

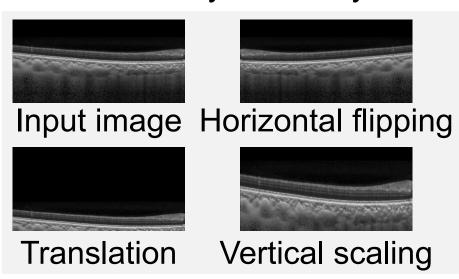
FCBR [1]

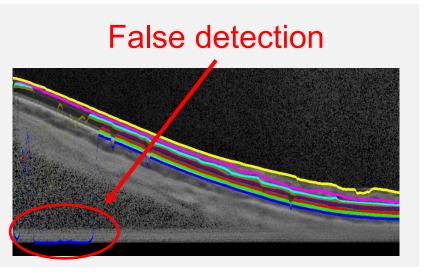
SASR [3]


^[1] Y. He et al., "Fully convolutional boundary regression for retina OCT segmentation," MICCAI, 2019.

^[2] O. Ronneberger et al., "U-Net: Convolutional networks for biomedical image segmentation," MICCAI, 2015.

^[3] H. Liu et al., "Simultaneous alignment and surface regression using hybrid 2D-3D networks for 3D coherent layer segmentation of retina OCT images," MICCAI, 2021.

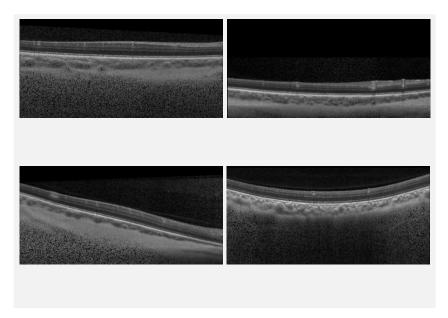

Problems of Boundary Detection


- □ Simplify the boundary detection by applying flattening [4] to the OCT images
- ☐ Flattening may fail, if the quality of the OCT image is low or the shape of retinal layers changes significantly due to diseases
- ☐ Consider a boundary detection method without flattening

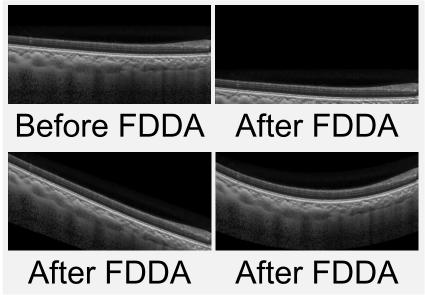
Data Augmentation for OCT Images

- To detect the boundaries without flattening, we need to train the network with a variety of OCT images
- ☐ Retinal layer segmentation methods use standard data augmentation to increase the variability of OCT images
 - Cannot increase the variability of retinal shapes
 - Cannot reproduce background noise of OCT images that may be falsely detected as retinal layers

Standard data augmentation

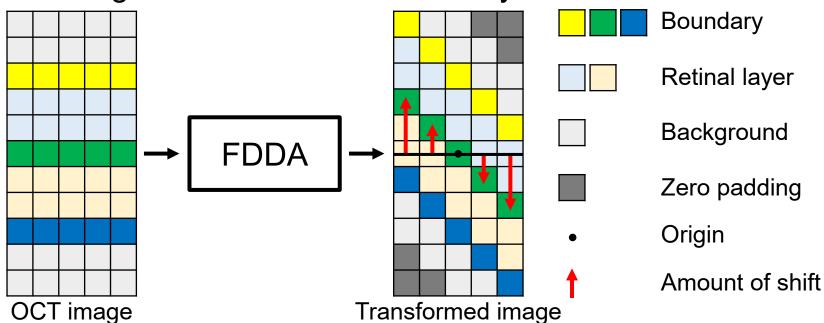

An example of false detection 5

Objective

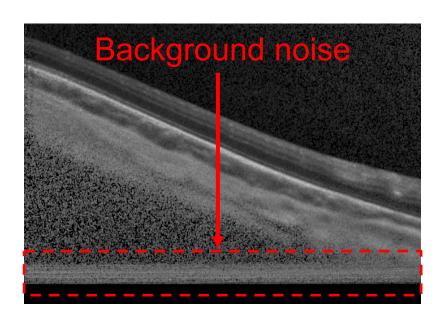

- ☐ Improve the accuracy of ophthalmic diagnostic support systems that use retinal layer thickness
- □ Propose two novel data augmentation methods for retinal layer segmentation
 - 1. <u>Formula-Driven Data Augmentation (FDDA)</u>
 Emulate a variety of retinal shapes, and increase the variability of retinal shapes in the training data
 - 2. <u>Partial Retinal Layer Copying (PRLC)</u>
 Reproduce the background noise of OCT images, and reduce false detection in the background region
- Evaluate the accuracy of boundary detection by introducing FDDA and PRLC to existing segmentation methods (FCBR [1], SASR [3])

Formula-Driven Data Augmentation (FDDA)

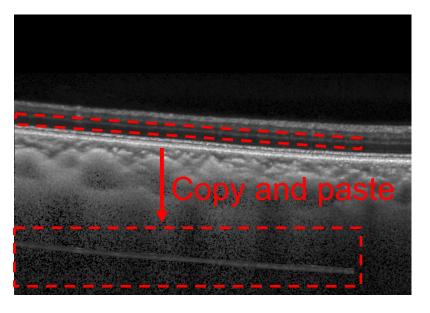
- Emulate a variety of retinal shapes based on mathematical formulas
- ☐ Change the position, the tilt, and the curvature of the retina by shifting vertically each column of OCT images
- ☐ Increase the variability of retinal shapes


Examples of actual OCT images

Examples of applying FDDA

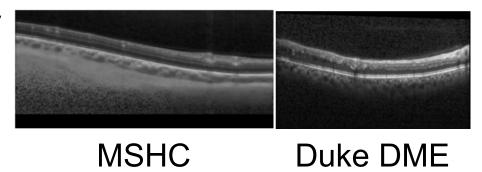

The Details of FDDA

- ☐ Shift each column of an OCT image according to a simple combination of 0~2nd-order functions
- Zeroth-order, first-order, and second-order functions change the position, the tilt, and the curvature of retinas respectively
- ☐ The labels after data augmentation can be obtained by shifting the labels in the same way



Partial Retinal Layer Copying (PRLC)

- ☐ Copy a part of retinal layers and paste it on the background region to reproduce background noise
- ☐ The segmentation network is trained to detect the pasted retinal layers as the background
- Reduce false detection in the background region

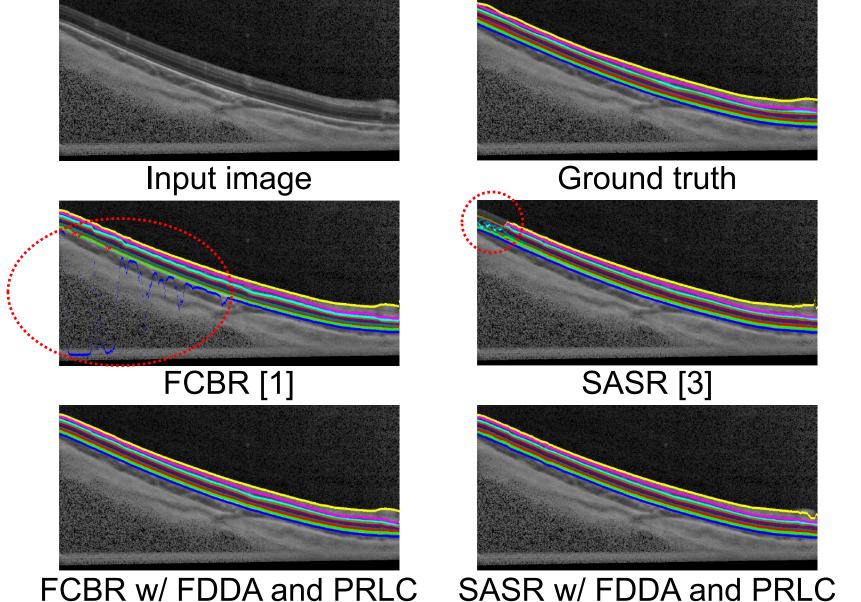

An example of OCT image

An example of applying PRLC

Experiments

- Evaluate the accuracy of boundary detection by introducing FDDA and PRLC to existing segmentation methods (FCBR [1], SASR [3])
- □ Compare FDDA and PRLC with similar data augmentation methods (RandomAffine, CutMix [5])
- Evaluate the mean absolute distance (MAD) between the detected boundary and the ground truth
- ☐ Use two public OCT datasets
 - OCT MS and Healthy Control (MSHC) [6]
 - Duke Cyst DME (Duke DME) [7]

^[5] S. Yun et al., "CutMix: Regularization strategy to train strong classifiers with localizable features," ICCV, 2019.


^[6] Y. He et al., "Retinal layer parcellation of optical coherence tomography images: data resource for multiple sclerosis and healthy controls," Data Brief, 2018.

^[7] S.J. Chiu et al., "Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema," Biomed Opt. Express, 2015.

MAD [μm] of Each Method

Method	Flattening	MSHC	Duke DME
FCBR [1]	0	2.92	6.59
FCBR [1]		3.87	6.94
w/ RandomAffine		3.76	6.44
w/ CutMix [5]		3.52	6.68
w/ FDDA		2.92	6.04
w/ PRLC		3.16	6.32
w/ FDDA and PRLC		2.84	5.97
SASR [3]	0	2.87	6.54
SASR [3]		3.05	6.34
w/ FDDA		2.92	5.84
w/ PRLC		2.99	6.10
w/ FDDA and PRLC		2.90	5.83

Examples of Detected Boundaries

Conclusion and Future Work

Conclusion

- Proposed two novel data augmentation methods for retinal layer segmentation: FDDA and PRLC
- Through the experiments, the use of FDDA and PRLC makes it possible to detect the boundaries with the same or higher accuracy than when flattening is performed

☐ Future work

■ Investigate the further improvement of segmentation accuracy by emulating retinas with myopia and/or structural disorders from retinas of healthy subjects