

тоноки UNIVERSITY

Background

Spoofing attacks need to be detected before face recognition

live and spoofed face image

Leveraging Intermediate Features of Vision Transformer for Face Anti-Spoofing

Mika Feng¹, Koichi Ito¹, Takafumi Aoki¹, Tetsushi Ohki², and Masakatsu Nishigaki² ¹ Graduate School of Information Sciences, Tohoku University, Japan ² Faculty of Informatics, Shizuoka University, Japan

Methodology

- In inference, the class token from the 8th encoder block of ViT is compared to "Live" reference vectors, and the maximum cosine similarity is taken as the score
- If Score is greater than or equal to the threshold, the image is considered "Live," otherwise, it is considered "Spoof"

Ablation Study

Table 1. Ablation study when changing the features used Table 3. Ablation study on loss functions, where the for score calculation, where the values indicate ACER \downarrow [%] values indicate ACER \downarrow [%]

Features	OULU-NPU Prot.	4 SiW Prot. 3
Encoder Block #6	<u>9.75±6.24</u>	4.1±1.04
Encoder Block #7	10.42±6.95	<u>3.07±0.08</u>
Encoder Block #8	8.83±7.51	2.2±0.57
Encoder Block #9	12.46±8.02	3.45±1.7
Encoder Block #10	13.13±8.95	3.13±2.08
Encoder Block #11	13.46±8.83	3.37±2.43
Encoder Block #12	15.17±8.37	3.58±2.81
Normalization Laye	r 15.25±8.03	3.6±2.91

y				•		¥ L	-
Table 2 Ablation study when changing the features used			ViT	FAS-Aug	PDA	OULU-NPU Prot. 4	SiW Prot. 3
able 2. Abiation study when changing the realures used $\sim 10/1$						15.25±8.03	3.6±2.91
or loss calculation, whe	ere the values indi	cale ACER \downarrow [%]			\checkmark	10.42±6.76	3.08±2.57
Features C	ULU-NPU Prot. 4	1 SiW Prot. 3		\checkmark		7.63±5.19	4.08±3.49
Encoder Block #8	10.46±5.60	3.02±2.37		\checkmark	\checkmark	6.08±2.76	2.07±1.63
Encoder Block #9	6.54±5.09	3.07±1.74	\checkmark			5.54±3.39	2.41±0.89
Encoder Block #10	6.13±3.81	2.63±0.73	\checkmark		\checkmark	5.5±4.15	2.0±0.45
Encoder Block #11	5.54±3.39	2.41±0.89	\checkmark	\checkmark		2.21±2.6	<u>1.34±0.58</u>
Encoder Block #12	<u>5.71±4.83</u>	<u>2.59±0.08</u>	\checkmark	\checkmark	\checkmark	<u>2.54±2.38</u>	0.83±0.13

Comparison between Proposed and Conventional Methods

Table 5. Experimental results of each method for $\bigcap | | | | | ND| | (| |_{nit}, 0/)$

	$\frac{1}{100} - \frac{1}{100} - \frac{1}$					JIIII. 70).			
Prot.	Method	APCER↓	BPCER↓	ACER↓	Prot.	Method	APCER↓	BPCER↓	ACER↓
	CDCN++	0.4	0.0	0.2		CDCN++	0.07	0.17	0.12
	NAS-FAS	0.4	0.0	0.2		NAS-FAS	0.07	0.17	0.12
	PatchNet	0.0	0.0	0.0		PatchNet	0.00	0.00	0.00
	Watanabe	3.7	2.4	3.0		Watanabe	0.11	<u>0.08</u>	0.10
1	Chen			<u>0.1</u>	1	TransFAS	0.00	0.00	0.00
	TransFAS	0.8	0.0	0.4		MFAE	0.00	0.00	0.00
	Li	<u>0.4</u>	0.0	0.2		Li	0.00	0.16	<u>0.08</u>
Р	roposed w/o PDA	1.21	1.08	1.15	Pr	oposed w/o PDA	0.45	0.33	0.39
F	Proposed w/ PDA	0.92	<u>0.5</u>	0.71	P	roposed w/ PDA	0.1	<u>0.08</u>	0.09
	CDCN++	1.8	0.8	1.3		CDCN++	0.00±0.00	0.09±0.10	0.04±0.05
	NAS-FAS	1.5	0.8	1.2		NAS-FAS	0.00±0.00	0.09±0.10	0.04 ± 0.05
	PatchNet	<u>1.1</u>	1.2	1.2		PatchNet	0.00±0.00	0.00±0.00	0.00±0.00
	Watanabe	1.1	0.7	<u>0.9</u>		Watanabe	0.01±0.01	0.01±0.01	0.01±0.01
2	Chen			1.1	2	TransFAS	0.00±0.00	0.00±0.00	0.00±0.00
	TransFAS	1.5	<u>0.5</u>	1.0		MFAE	0.00±0.00	0.00±0.00	0.00±0.00
	Li	1.5	<u>0.5</u>	1.0		Li	0.00±0.00	0.16±0.00	0.08 ± 0.00
Ρ	roposed w/o PDA	1.36	0.69	1.02	Pr	oposed w/o PDA	0.05 ± 0.07	0.05 ± 0.05	0.05 ± 0.06
F	Proposed w/ PDA	0.69	0.39	0.54	P	roposed w/ PDA	0.02±0.03	0.02±0.03	0.02±0.03
	CDCN++	1.7±1.5	2.0±1.2	1.8±0.7		CDCN++	1.97±0.33	1.77±0.10	1.90±0.15
	NAS-FAS	2.1±1.3	1.4±1.1	1.7±0.6		NAS-FAS	1.58±0.23	1.46±0.08	1.52±0.13
	PatchNet	1.8±1.47	<u>0.56±1.24</u>	1.18±1.26		PatchNet	3.06 ± 1.1	1.83±0.83	2.45±0.45
	Watanabe	1.2±1.0	0.7 ± 1.0	1.0 ± 1.0		Watanabe	3.07±2.75	3.07±2.75	3.07 ± 2.75
3	Chen			1.4±1.21	2	TransFAS	1.95 ± 0.40	1.92±0.11	1.94±0.26
	TransFAS	0.6±0.7	1.1±2.5	<u>0.9±1.1</u>		MFAE	2.57±1.83	1.92±1.06	2.42±1.45
	Li	<u>0.7±0.9</u>	1.1±2.7	0.9±1.3		Li	2.13±1.22	2.25±1.06	2.19±1.14
P	roposed w/o PDA	1.39±0.67	0.86 ± 0.52	1.13±0.57	Pr	oposed w/o PDA	<u>1.34±0.58</u>	<u>1.34±0.59</u>	<u>1.34±0.58</u>
F	Proposed w/ PDA	0.85±0.62	0.33±0.3	0.59±0.45	P	roposed w/ PDA	0.83±0.13	0.84±0.14	0.83±0.13
	CDCN++	4.2±3.4	5.8 ± 4.9	5.0±2.9		Con	clusic	n	
	NAS-FAS	4.2 ± 5.3	<u>1.7±2.6</u>	2.9±2.8			CIUSIC		
4	PatchNet	<u>2.5±3.81</u>	3.33 ± 3.73	2.9±3.0		ropocod o foco	cnoofing	dataction	
	Watanabe	9.6±7.0	5.6±4.7	7.6±5.4	vvep		spooning	uelection	
	Chen			2.8±2.6	metho	od using Vil's i	ntermedia	ate feature	es
	TransFAS	2.1±2.2	3.8 ± 3.5	2.9±2.4	and d	lata augmentat	ions, whic	h may im	prove
	Li	2.9±2.9	<u>1.7±2.6</u>	<u>2.3±2.2</u>	the ac	ccuracy of othe	r detectio	n annroad	ches
P	roposed w/o PDA	2.75±3.01	1.67±2.25	2.21±2.6					
F	Proposed w/ PDA	2.75±2.41	2.33±2.39	2.54±2.38	[1] A. Do	sovitskiy et al., ICLR	, 2021. [2] K.	Watanabe et	al., APSIPA,

Experiments

-Class	L _{Class} ¹¹	L _{APL}	OULU-NPU Prot. 4	SiW Prot. 3
\checkmark			9.46±8.01	<u>1.73±0.33</u>
\checkmark		\checkmark	<u>8.83±7.51</u>	2.2±0.57
\checkmark	\checkmark		9.0±6.0	1.63±0.19
\checkmark	\checkmark	\checkmark	5.54±3.39	2.41±0.89

Table 4. Ablation study on data augmentation, where "ViT" indicates with and without using the intermediate features, and the values indicate ACER \downarrow [%]

Table 6. Experimental results of each method for $Gi(\Lambda)$ (1 Init: 0/)

, 2022.

[3] X. Chen et al., arXiv, 2023. [4] Z. Wang et al., IEEE T-BIOM, 2022.

[5] R. Cai et al., IJCV, 2024. [6] R. Ranjan et al., arXiv, 2017.