

TOHOKU UNIVERSITY

Leveraging Intermediate Features of Vision Transformer for Face Anti-Spoofing

<u>Mika Feng</u>¹, Koichi Ito¹, Takafumi Aoki¹ Tetsushi Ohki², and Masakatsu Nishigaki²

1 Graduate School of Information Sciences, Tohoku University, Japan 2 Faculty of Informatics, Shizuoka University, Japan

Face anti-spoofing

Face recognition is robust against environmental changes
If a face photo of a registered user is presented, a malicious person may bypass the authentication process illegally

Conventional methods using Vision Transformer (ViT)

TransFAS^[4]: The optimal intermediate layers have not been verified

[1] A. Dosovitskiy et al., "An image is worth 16x16 words: Transformers for image recognition at scale," ICLR, 2021.

[2] K. Watanabe et al., "Spoofing attack detection in face recognition system using vision transformer with patch-wise data augmentation," APSIPA, 2022.

[3] X. Chen et al., "Fine-grained annotation for face anti-spoofing," arXiv, 2023.

[4] Z. Wang et al., "Face anti-spoofing using transformers with relation-aware mechanism," IEEE T-BIOM, 2022.

Proposed method

Use intermediate features that balance local/global features and have high generalization performance without overfitting

Face Anti-Spoofing data Augmentation (FAS-Aug)

[5] R. Cai et al., "Towards Data-Centric Face Anti-spoofing: Improving Cross-Domain Generalization via Physics-Based Data Synthesis." IJCV, 2024.

Patch-wise Data Augmentation (PDA)

*L*_{APL} ^[2]: Take into account patch-wise spoof attack detection
This makes detection more difficult, thereby enhancing the learning of the model

[2] K. Watanabe et al. "Spoofing attack detection in face recognition system using vision transformer with patch-wise data augmentation," APSIPA, 2022.

Loss functions

- L_{Class¹¹} : Refine the features of the class token output from the 8th encoder block used to calculate the score
- Use L2-constrained softmax loss ^[6] to train the feature vectors equally without bias toward either "Live" or "Spoof"

Score calculation

Use the class token of the 8th encoder block to calculate score

If the score is greater than or equal to a threshold, the image is considered "Live," otherwise, it is considered "Spoof."

Dataset

- Use SiW^[7] and OULU-NPU^[8] datasets in the following experiments
- SiW^[7]: Video of 165 subjects captured under varying lighting, head pose, and facial expression

Live

Print Attack

Display Attack

Evaluation Protocol provided in SiW^[7]

Prot.	Description
1	Changes in pose and facial expression
2	Types of display devices used in display attacks
3	Unknown spoofing attacks

[7] Y. Liu et al., "Learning deep models for face anti-spoofing: Binary or auxiliary supervision," CVPR, 2018.[8] Z. Boulkenafet et al., "OULU-NPU: A mobile face presentation attack database with real-world variations," FG, 2017.

Experiments

- i. Intermediate features of ViT^[1] used for score calculation
 - The class token of the 8th encoder block balances local and global information without overfitting
- ii. Intermediate features of ViT^[1] used for loss calculation
 - The class token of the 8th encoder block is refined by adding constraints to that of the 11th encoder block
- iii. Effectiveness of the loss functions: \mathcal{L}_{APL} ^[2] and $\mathcal{L}_{Class^{11}}$
 - The combination of all loss functions are effective
- iv. Effectiveness of the data augmentation methods: FAS-Aug ^[5] and PDA ^[2]
 - $P_{FAS-Aug} = 0.2, P_{PDA} = 0.2$
- v. Comparison between the conventional and proposed methods using SiW^[7] and OULU-NPU^[8] dataset

v. Experimental results for SiW

Prot.	Method	APCER (%) ↓	BPCER (%) ↓	ACER (%) ↓
1	NAS-FAS ^[9]	0.07	0.17	0.12
	Watanabe ^[2]	0.11	0.08	0.10
	TransFAS ^[4]	0.00	0.00	0.00
	Proposed	0.1	0.08	<u>0.09</u>
2	NAS-FAS ^[9]	0.00 ± 0.00	0.09 ± 0.10	0.04 ± 0.05
	Watanabe ^[2]	0.01 ± 0.01	0.01 ± 0.01	0.01 ± 0.01
	TransFAS ^[4]	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
	Proposed	0.02 ± 0.03	0.02 ± 0.03	0.02 ± 0.03
3	NAS-FAS ^[9]	1.58 ± 0.23	<u>1.46±0.08</u>	1.52 ± 0.13
	Watanabe ^[2]	3.07 ± 2.75	3.07 ± 2.75	3.07 ± 2.75
	TransFAS ^[4]	1.95 ± 0.40	1.92 ± 0.11	1.94 ± 0.26
	Proposed	0.83 ± 0.13	0.83 ± 0.14	0.83 ± 0.13