

Equirectangular Image Rendering Enhanced with 3D Gaussian Regularization

O Shintaro Ito¹, Natsuki Takama¹ Koichi Ito¹,
Hwann-Tzong Chen², and Takafumi Aoki¹
1 Graduate School of Information Sciences, Tohoku University, Japan
2 National Tsing Hua University, Taiwan

IEEE ICIP 2025

Novel View Synthesis via 3DGS^[3] from ERP images

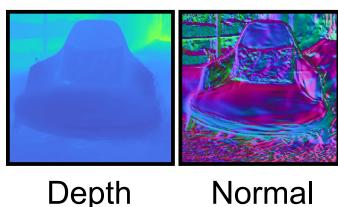
- **Novel View Synthesis (NVS)** is a promising technique with diverse applications, including VR/AR, robotics and entertainment products
- Omnidirectional camera can capture a wide field of view in a single shot with Equirectangular projection (ERP) image
- The images often contain distortion, which leads undesired artifacts in NVS

^[1] https://www.ricoh360.com/ja/theta/

^[2] https://www.insta360.com/jp/product/insta360-x5

Challenges in NVS Using ERP Images

Previous methods often show a decline in NVS accuracy due to the camera distortions and a lack of geometric consistency



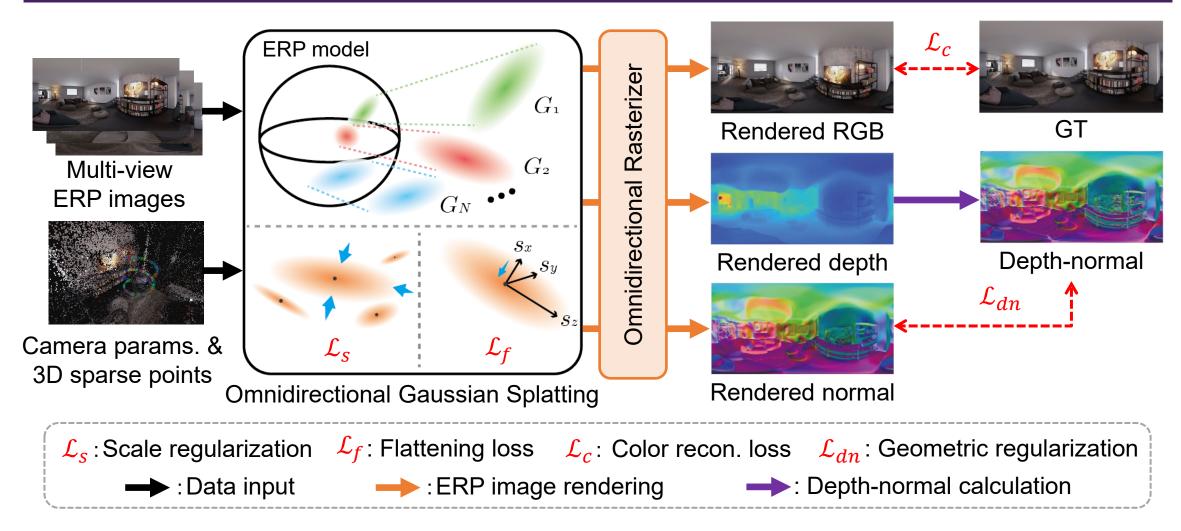
Noise caused by strong camera distortion

A lack of geometric consistency across different rendered domains

Reduce the effects with a scale regularization

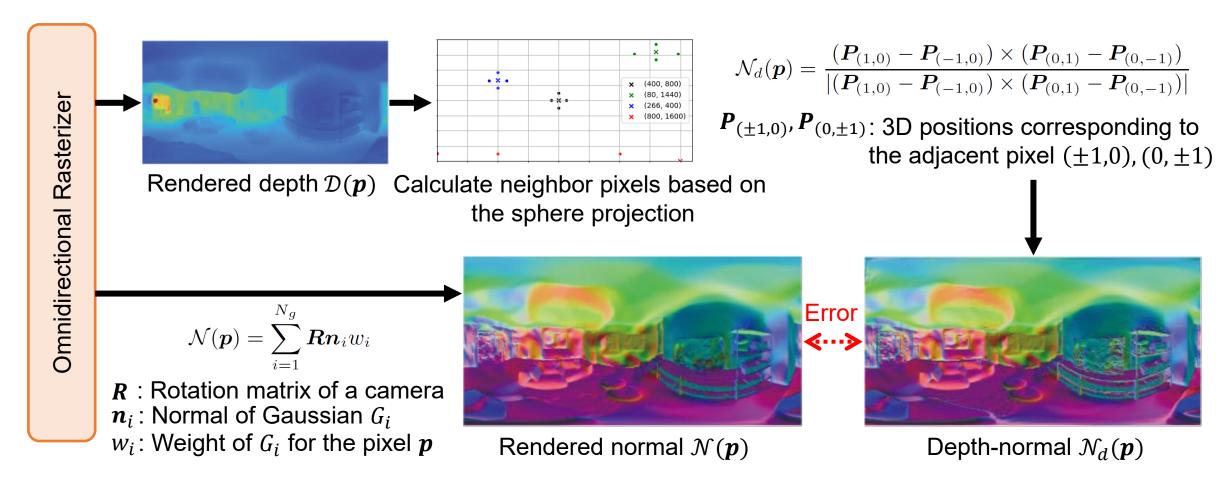
Maintain the geometric consistency with a geometric regularization

Proposed method: ErpGS



■ ErpGS takes a set of omnidirectional images as input, then optimizes omnidirectional Gaussian splatting to render novel views in high accuracy

Depth-Normal Calculation



- For each pixel in an ERP image, adjacent pixels in 3D space are selected to compute a normal vector from depth
- The error of the normal map rendered by a rasterizer is minimized

Regularization Terms

- Geometric regularization
- Minimize the error between normal and depth-normal
 - Utilize the color gradient following PGSR^[4]

$$DNE(m{p}) = |\overline{
abla \mathcal{I}(m{p})}|^2 ||\mathcal{N}_d(m{p}) - \mathcal{N}(m{p})||$$
 $|\overline{
abla \mathcal{I}(m{p})}|$: The color gradient at pixel $m{p}$

 $DNE(\boldsymbol{p})$

Rendered normal $\mathcal{N}(p)$ Depth-normal $\mathcal{N}_d(p)$

- Scale regularization
 - Constrain the Gaussians to be smaller so that decrease the number of excessively large Gaussians

$$\mathcal{L}_{S} = \frac{1}{N_{g}} \sum_{i=1}^{N_{g}} \|\mathbf{s}_{i}\|_{2}^{2} \quad \begin{array}{c} S_{g}: \text{ The total number of Gaussians} \\ \mathbf{s}_{i}: \text{ The scale vector of Gaussian } G_{i} \end{array}$$

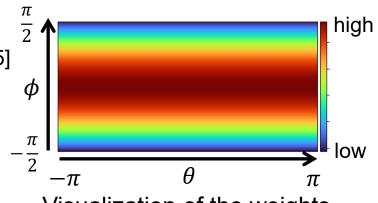
Omnidirectional Gaussian Splatting Optimization

- Distortion-aware weight
 - Consider the weight based on the area in 3D space^[5]

$$\mathcal{W} = \int_{\theta_0}^{\theta_1} \int_{\phi_0}^{\phi_1} \cos \theta d\theta d\phi \qquad \begin{array}{c} \theta \text{ : Longitude in ERP image} \\ \phi \text{ : Latitude in ERP image} \end{array}$$

Loss function

$$\mathcal{L} = \mathcal{L}_c + \lambda_{dn} \mathcal{L}_{dn} + \lambda_f \mathcal{L}_f + \frac{1}{2} \lambda_s \mathcal{L}_s$$



Visualization of the weights

Color reconstruction loss \mathcal{L}_c

$$\mathcal{L}_{c} = \frac{\sum_{p \in \mathcal{P}} \mathcal{W}_{p} \odot \mathcal{M}_{p} \odot CRE(p)}{\sum_{p \in \mathcal{P}} \mathcal{W}_{p} \odot \mathcal{M}_{p}}$$

$$CRE(\mathbf{p}) = (1 - \lambda) |C(\mathbf{p}) - C_{gt}(\mathbf{p})|$$
$$+\lambda (1 - SSIM(C(\mathbf{p}), C_{gt}(\mathbf{p})))$$

Geometric regularization \mathcal{L}_{dn}

$$\mathcal{L}_{dn} = \frac{\sum_{\boldsymbol{p} \in \mathcal{P}} \mathcal{W}_{\boldsymbol{p}} \odot \mathcal{M}_{\boldsymbol{p}} \odot DNE(\boldsymbol{p})}{\sum_{\boldsymbol{p} \in \mathcal{P}} \mathcal{W}_{\boldsymbol{p}} \odot \mathcal{M}_{\boldsymbol{p}}}$$

Flattening loss \mathcal{L}_f $\mathcal{L}_f = \left| \min(s_x, s_y, s_z) \right|$

 \mathcal{W}_{p} : Weight at p

 \mathcal{M}_{p} : Mask at p

C(p), $C_{gt}(p)$: Rendered RGB and GT at p, respectively

Experimental Setup

- Evaluate the quality of rendered novel views from a set of ERP images
- Dataset
 - Preprocessed data of OmniBlender^[6], Ricoh360^[6], and OmniScenes^[7] provided by ODGS^[9]
- Benchmarks and experimental settings
 - ODGS^[9], OmniGS^[10], and EgoNeRF^[8]
 - The number of iterations are 30,000, 30,000, and 200,000 times, respectively
- Metrics
 - PSNR [dB], SSIM
 - LPIPS (A): AlexNet is used as an encoder

^[6] https://github.com/changwoonchoi/EgoNeRF.git [7] https://github.com/82magnolia/piccolo.git

^[8] C. Choi et al., "Balanced spherical grid for egocentric view," CVPR, June 2023.

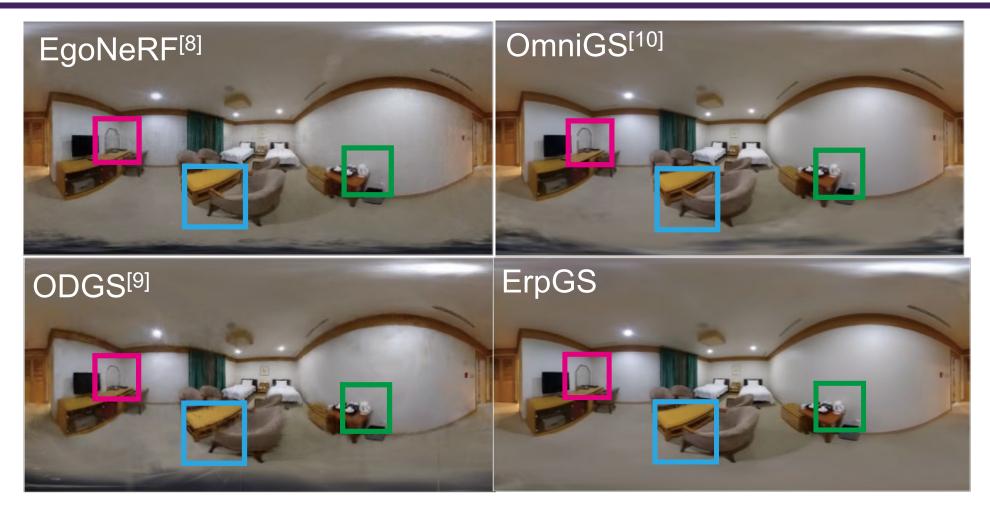
^[9] S. Lee et al., "ODGS: 3D scene reconstruction from omnidirectional images with 3D Gaussian splattings," NeurIPS, Dec. 2024. [10] L. Li et al., "OmniGS: Omnidirectional Gaussian splatting for fast radiance field reconstruction using omnidirectional images," WACV, Feb. 2025.

Quantitative Results in NVS

	PSNR [dB]↑				SSIM↑				LPIPS (A) ↓				
Dataset	Scene	Solvedo.	8	Onnics	Sino	Goodep	8	Omnics	Supo	Goodep	8	Omnics	Out
OmniBlender	barbershop lone-monk archiviz-flat classroom	30.57 31.10 31.69 26.75	33.66 28.58 32.50 26.20	37.26 29.00 33.38 33.03	38.71 32.34 35.95 33.62	0.900 0.935 0.917 0.770	0.947 0.922 0.943 0.798	0.974 0.943 0.954 0.906	0.979 0.963 0.963 0.917	0.187 0.073 0.103 0.368	0.123 0.098 0.095 0.385	0.050 0.067 0.056 0.190	0.040 0.037 0.040 0.157
Ricoh360	bricks center farm flower	24.39 29.42 22.58 22.09	22.23 24.37 20.31 19.61	22.27 26.78 20.04 21.74	25.03 28.63 21.66 22.88	$\begin{array}{r} 0.791 \\ \underline{0.874} \\ \underline{0.695} \\ 0.658 \end{array}$	0.724 0.789 0.630 0.597	0.766 0.855 0.654 0.715	0.820 0.879 0.696 0.747	$\begin{array}{c} 0.186 \\ \hline 0.144 \\ 0.239 \\ 0.291 \end{array}$	0.293 0.396 0.396 0.474	0.251 0.188 <u>0.275</u> <u>0.258</u>	0.173 0.138 0.210 0.208
OmniScenes	pyebaek room wedding-hall	25.05 28.69 26.00	23.82 27.25 24.94	26.67 30.29 26.99	27.08 31.00 27.35	0.795 0.904 0.826	0.796 0.900 0.831	0.862 0.928 0.868	$0.867 \\ 0.932 \\ 0.872$	0.244 0.202 0.242	0.256 0.225 0.273	0.168 0.155 0.193	$0.156 \\ 0.142 \\ 0.171$

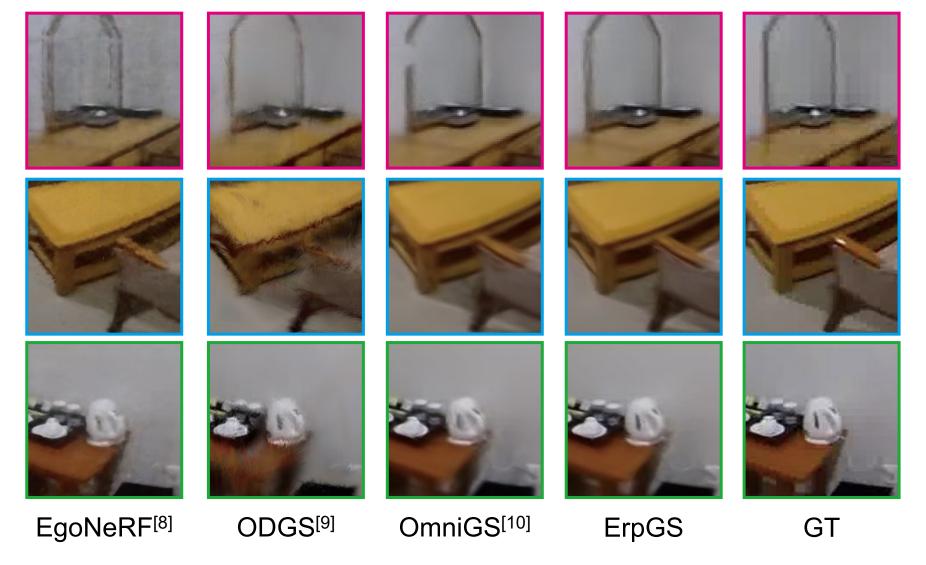
- ErpGS (Ours) achieves the highest accuracy in novel view ERP image rendering
- In real outdoor scenes (i.e., Ricoh360), EgoNeRF demonstrates high robustness

Qualitative Results in NVS



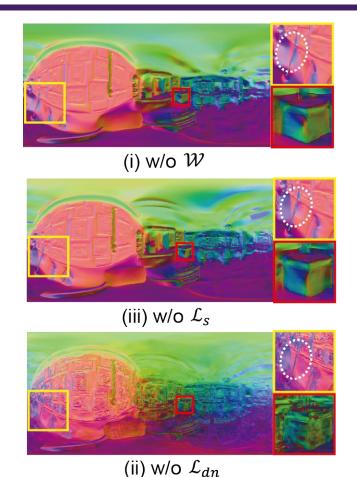
- ErpGS renders novel view ERP image with minimal overall noise, resulting in high qualitative accuracy
 - The noise introduced by the tripod at the bottom of the image is removed

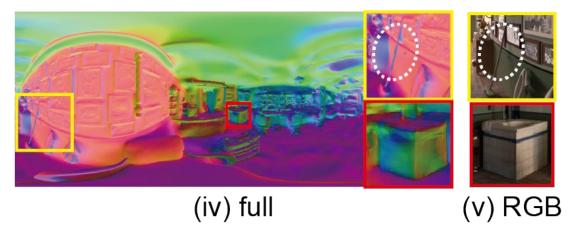
Fine Details of Qualitative Results on NVS



■ ErpGS renders the fine details better compared to the other methods

Ablation Study: Geometric Consistency





Ablation	PSNR↑ [dB]	SSIM ↑	LPIPS (A) ↓	LPIPS (V) ↓
$\overline{\mathrm{w/o}\;\mathcal{W}}$	33.86	0.949	0.0852	0.1630
w/o \mathcal{L}_{dn}	34.61	0.953	0.0717	0.1429
w/o \mathcal{L}_s	34.64	0.954	0.0723	0.1434
All	35.16	0.956	0.0687	0.1374

Quantitative results of rendered ERP images

- The ablation studies for distortion weight \mathcal{W} , geometric regularization \mathcal{L}_{dn} , and scale regularization \mathcal{L}_{s}
- Considering the distortion and preserving geometric consistency is crucial

Conclusion and Future Work

Conclusion

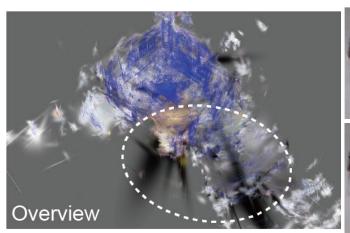
 We achieved improved accuracy in novel view synthesis from a set of ERP images by introducing geometric regularization and scale regularization to optimize omnidirectional Gaussian splatting

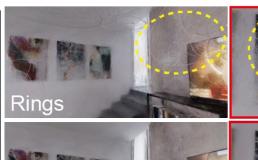
■ Future Work

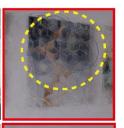
- Achieve better novel view synthesis, including camera parameter refinement
- Realize 3D mesh reconstruction for a large-scale scene using ERP images

Thank you for your attention!!

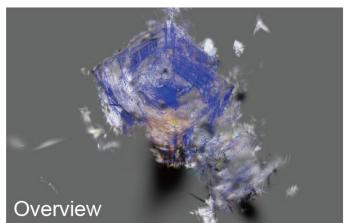
Ablation Study: Appearance of Gaussian Ellipsoids







(i) w/o \mathcal{L}_{s}



- Investigate the effectiveness of introducing a scaling loss \mathcal{L}_s for generating Gaussians
- The occurrence of large Gaussians are suppressed
- Given that the Gaussians are suppressed to an appropriate size, it is believed that the quality of the rendered images are improved

(iii) RGB